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Fig. 1. Quasistatic Muscle Simulation with Collisions. Left. Our method (PBNG) produces high-quality results visually comparable to Newton’s method
but with a 6x speedup. PBD (lower left) becomes unstable with this quasistatic example after a few iterations.Middle. In this hyperelastic simulation of
muscles, we use weak constraints to bind muscles together and resolve collisions. Red indicates a vertex involved in a contact constraint. Blue indicates a
vertex is bound with connective tissues. Right. A dress of 24K particles is simulated with MPBNG on a running mannequin. The rightmost image visualizes
our multiresolution mesh.

Position based dynamics [Müller et al. 2007] is a powerful technique for
simulating a variety of materials. Its primary strength is its robustness when
run with limited computational budget. Even though PBD is based on the
projection of static constraints, it does not work well for quasistatic problems.
This is particularly relevant since the efficient creation of large data sets
of plausible, but not necessarily accurate elastic equilibria is of increasing
importance with the emergence of quasistatic neural networks [Bailey et al.
2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work
[Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel
approximation of a Lagrange multiplier formulation of backward Euler time
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stepping, where each constraint is solved/projected independently of the
others in an iterative fashion. We show that a position-based, rather than
constraint-based nonlinear Gauss-Seidel approach resolves a number of
issues with PBD, particularly in the quasistatic setting. Our approach retains
the essential PBD feature of stable behavior with constrained computational
budgets, but also allows for convergent behavior with expanded budgets.
We demonstrate the efficacy of our method on a variety of representative
hyperelastic problems and show that both successive over relaxation (SOR),
Chebyshev and multiresolution-based acceleration can be easily applied.
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1 INTRODUCTION
We consider large strain hyperelastic solids [Bonet and Wood 2008]
whose governing equations are discretized in space with the finite
element method (FEM) [Sifakis and Barbic 2012]. Our primary focus
is quasistatic problems with negligible inertial effects. Quasistatic
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solvers are becoming increasingly important due to their use in
generating training data for neural networks (or QNNS: quasistatic
neural networks). For example, various authors have shown that
QNNs can be effectively trained for elastic materials in cloth and
skinning applications [Bailey et al. 2018; Bertiche et al. 2021; Chen-
tanez et al. 2020; Geng et al. 2020; Jin et al. 2020, 2022; Luo et al.
2020]. These networks engender real-time performance at resolu-
tions orders of magnitude abovewhat is achievable with any existing
simulation techniques on modern hardware. However, QNNs re-
quire tens of thousands of high-resolution equilibria for training
data sets. While the creation of these data sets is an “off-line" pro-
cess, it is desirable to create them with minimal user interaction and
computation time. Furthermore, extremely accurate solutions to the
governing equations are not necessary since the network need only
approximate visually convincing behaviors. Therefore, simulation
techniques that generate visually plausible behavior in a minimal
amount of computation with minimal user interaction/parameter
tuning are ideal.
While many methods exist for solving the FEM-discretized im-

plicit equations of motion for hyperelastic solids (see Zhu et al.
[2018] and Li et al. [2019] for recent summaries), the Position Based
Dynamics (PBD) approach of Müller et al. [2007] is a natural candi-
date for generating training data for QNNs. It has remarkable ro-
bustness and stability properties and can produce visually plausible
results with minimal computational budgets. However, constitu-
tive control over PBD behavior is challenging as effective material
stiffnesses etc. vary with iteration count and time step size. The
Extended Position Based Dynamics (XPBD) approach of Macklin et
al. [2016] addressed these issues by reformulating the original PBD
approach in terms of a Gauss-Seidel technique for discretizing a
total Lagrange multiplier formulation of the backward Euler system
for implicit time stepping. This formulation has similarities to PBD,
but with the elastic terms handled properly where PBD can be seen
as the extreme case of infinite elastic modulus.

Despite its many strengths, PBD/XPBD has a few limitations that
hinder its use in quasistatic applications. First, XPBD is designed for
backward Euler and omitting the inertial terms for quasistatics is
not possible (it would require dividing by zero). Indeed Chentanez
et al. [2020] generate quasistatic training data with XPBD by run-
ning backward Euler simulations to steady state. We show that PBD
when viewed as the limit of infinite stiffness in XPBD (as detailed
in Macklin et al. [2016]) is an approximation to the quasistatic equa-
tions. Unfortunately, this limit incorrectly and irrevocably removes
the external forcing terms. Second, PBD/XPBD can only discretize
hyperelastic models that are quadratic in some notion of strain con-
straint [Macklin and Muller 2021; Macklin et al. 2016]. As noted in
[Chen et al. 2023], simply interpreting the square root of the hypere-
lastic potential as the constraint results in instability. This prevents
the adoption of many models from the computational mechanics
literature. Lastly, as noted in Chen et al. [2023] the constraint-centric
Gauss-Seidel iteration in PBD/XPBD does not reliably reduce time
stepping system residuals. We show that in quasistatic problems
this causes artifacts near vertices that appear in different types of
constraints (see Figure 2).

We present a position-based (rather than constraint-based) nonlin-
ear Gauss-Seidelmethod that resolves the key issueswith PBD/XPBD

and hyperelastic quasistatic time stepping. In our approach, we it-
eratively adjust the position of each simulation node to minimize
the potential energy (with all other coupled nodes fixed) in a Gauss-
Seidel fashion. This makes each position update aware of all con-
straints that a node participates in and removes the artifacts of
PBD/XPBD that arise from processing constraints separately. Our
approach maintains the essential efficiency and robustness features
of PBD and has an accuracy that rivals Newton’s method for the
first few orders of magnitude in residual reduction. Furthermore,
unlike Newton’s method, our approach is stable when the compu-
tational budget is extremely limited. Lastly, since our approach is
based on Gauss-Seidel, we show that its convergence is naturally
accelerated with successive over relaxation (SOR), Chebyshev and
novel multiresolution-based techniques.
The minimization involved in the position update of each node

amounts to a nonlinear system of equations (3 equations in 3D
and 2 in 2D). We approximate the solution with Newton’s method.
The linearization of hyperelastic terms can have symmetric indef-
inite matrices. We develop an inexpensive yet effective technique
for projecting any isotropic potential energy density Hessian to a
symmetric positive definite counterpart as in [Teran et al. 2005].
However, unlike the definiteness projections in [Teran et al. 2005]
and [Smith et al. 2019], it does not require the singular value de-
composition of the deformation gradient. Furthermore, unlike the
definiteness projection in [Teran et al. 2005], it does not require the
solution of 3 × 3 or 2 × 2 symmetric eigensystems. As with PBD
and other Gauss-Seidel approaches, a degree of freedom coloring
technique is needed for efficient parallel performance. We provide a
simple approach for this coloring and show that the position-based
view tends to have far fewer colors than the constraint-based view
in PBD and that this improves scalability and performance. Lastly,
although our technique is designed for quasistatics, it is easily ap-
plicable to backward Euler discretizations of problems with inertia
if we minimize the incremental potential [Bouaziz et al. 2014; Gast
et al. 2015; Liu et al. 2013; Martin et al. 2011; Narain et al. 2016; Stern
and Desbrun 2006] rather than the potential energy. We summarize
our contributions as:

• A position-based, rather than constraint-based, nonlinear
Gauss-Seidel technique for hyperelastic implicit time step-
ping.

• Ahyperelastic energy density Hessian projection to efficiently
guarantee definiteness of linearized equations that does not
require a singular value decomposition or symmetric eigen
solves.

• A node coloring technique that allows for efficient parallel
performance of our Gauss-Seidel updates.

• A novel multiresolution acceleration technique for reducing
iteration counts at high resolution.

2 PREVIOUS WORK
Baraff and Witkin first demonstrated that implicit time stepping
with elasticity is essential for efficiency [Baraff and Witkin 1998].
Many approaches characterize implicit time stepping with hyper-
elasticity as a minimization of an incremental potential [Bouaziz
et al. 2014; Gast et al. 2015; Liu et al. 2013; Martin et al. 2011; Narain
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et al. 2016; Stern and Desbrun 2006]. This is often referred to as
variational implicit Euler [Martin et al. 2011; Stern and Desbrun
2006] or optimization implicit Euler [Liu et al. 2013]. Quasistatic
time stepping is an extreme case where inertia terms are ignored
and only the strain energy is minimized [Kovalsky et al. 2016; Liu
et al. 2008; Rabinovich et al. 2017; Sorkine and Alexa 2007; Teran
et al. 2005]. Minimizers are usually found by setting the gradient of
the energy to zero and solving the associated nonlinear system of
equations with Newton’s method.While Newton’s method [Nocedal
and Wright 2006] generally requires the fewest iterations to reach
a desired tolerance (often achieving quadratic convergence), each
iteration can be costly and a line search is typically required for
stability [Gast et al. 2015]. There are many techniques that are less
costly than Newton, but that can only reduce the system residual
by a few orders of magnitude. However, many are satisfactory for
visual accuracy. See discussion in Liu et al. [2013], Bouaziz et al.
[2014] and Zhu et al. [2018].

Hyperelastic potentialsmust be rotationally invariant, non-negative
and have global minima equal to zero at rotations. These considera-
tions make the energy minimization non-convex with potentially
non-unique solutions in quasistatic problems [Bonet and Wood
2008]. The non-convexity yields indefinite energy Hessians that can
prevent convergence. Quasi-Newton methods can be used to ap-
proximate the Hessian with a symmetric semi-definite counterpart
[Li et al. 2019; Nocedal and Wright 2006; Smith et al. 2019; Teran
et al. 2005; Zhu et al. 2018]. Many methods avoid the indefinite-
ness issue with the inclusion of auxiliary (or secondary) variables.
Narain et al. [2016], Bouaziz et al. [2014], Liu et al. [2013] are recent
examples of this, but similar approaches have been used in graphics
since the local/global approach with ARAP by Sorkine et al. [2007].
Rabinovich et al. [2017] generalize this approach to a wider range
of distortion energies.
Methods like the Alternating Direction Method of Multipliers

(ADMM) [Boyd et al. 2011; Narain et al. 2016], the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [Bertsekas
1997; Liu et al. 2017; Witemeyer et al. 2021; Zhu et al. 2018] and
Sobolev preconditioned gradient descent (SGD) [Bouaziz et al. 2014;
Liu et al. 2013; Neuberger 1985; Sorkine and Alexa 2007] require the
inversion of a constant discrete elliptic operator (component-wise
Laplacian) which can be pre-factored for efficiency. While this dis-
crete operator does not suffer from indefiniteness issues, various
authors note that SGD approaches may converge initially faster than
Newton but will often taper off [Bouaziz et al. 2014; Liu et al. 2013;
Wang 2015; Zhu et al. 2018]. Zhu et al. [2018] tailor their approach
to this observation and use SGD initially and then combine with
L-BFGS to incorporate more second-order information. Liu et al.
[2017] and Witemeyer et al. [2021] also use combinations of SGD
and L-BFGS. Kovalsky et al. [2016] add Nesterov acceleration to SGD.
Hecht et al. [2012] develop efficient updates for a pre-factored Hes-
sian with corotated materials. Wang [2015] discusses the challenges
of using direct solution/pre-factoring in the SGD-style approaches
of Narain et al. [2016], Bouaziz et al. [2014] and Liu et al. [2013] and
develops a Chebyshev acceleration technique as an alternative. In
particular, they show that pre-factored discrete elliptic operators are
memory-intensive (particularly at high-resolution) and limited since
forward and backward substitutions do not parallelize. Moreover,

[Wang 2015] show that simply replacing the direct solver with an
iterative solver with reduced iteration count can lead to visually
implausible or even unstable behaviors. However, Fratarcangeli et
al. [2016] show that Gauss-Seidel iteration does not suffer from the
same limitations in this context, although it does require degree of
freedom coloring to facilitate parallel computation.

Tournier et al. [2015] develop a technique for bridging elasticity
and constraint-based approaches that is robust to large stiffness.
They use a similar primal/dual setup to XPBD. However, unlike
XPBD, their approach solves the entire system at once, rather than
iterating over individual constraints. Wang and Yang [2016] use a
Chebyshev accelerated gradient descent approach for general hy-
perelasticity and FEM. [Lan et al. 2023] use a Gauss-Seidel approach
similar to our own (although they focus on problems with inertia).
Rather than iteratively adjusting the position of each node as we do,
they adjust all nodes of each tetrahedron element (which requires
the solution of a 12 × 12 system). The computational burden of this
larger system is significant though since information from all adja-
cent elements must be included in the computation. This reduces
the efficiency of coloring for parallelism and is more appropriate
for offline/highly accurate computations.

3 EQUATIONS
We consider continuum mechanics conceptions of the governing
physics where a flow map 𝝓 : Ω0 × [0,𝑇 ] → R𝑑 , 𝑑 = 2 or 𝑑 =

3, describes the motion of the material. Here the time 𝑡 ∈ [0,𝑇 ]
location of the particle X ∈ Ω0 ⊂ R𝑑 is given by 𝝓 (X, 𝑡) ∈ Ω𝑡 ⊂ R𝑑
where Ω0 and Ω𝑡 are the initial and time 𝑡 configurations of material
respectively. The flow map 𝝓 obeys the partial differential equation
associated with momentum balance

𝑅0 𝜕
2𝝓

𝜕𝑡2
= ∇X · P + fext (1)

where 𝑅0 is the initial mass density of the material, P is the first
Piola-Kirchhoff stress and fext is external force density. This is also
subject to boundary conditions

𝝓 (X, 𝑡) = x𝐷 (X, 𝑡), X ∈ 𝜕Ω0
𝐷

(2)

P(X, 𝑡)N̂(X, 𝑡) = T(X, 𝑡), X ∈ 𝜕Ω0
N̂

(3)

where N̂ is the outward-pointing normal to the initial boundary
𝜕Ω0 and 𝜕Ω0 is split into Dirichlet (𝜕Ω0

𝐷
) and Neumann (𝜕Ω0

N̂
) re-

gions where the deformation and applied traction respectively are
specified. Here T denotes externally applied traction boundary con-
ditions. For hyperelastic materials, the first Piola-Kirchhoff stress is
related to a notion of potential energy density Ψ : R𝑑×𝑑 → R as

P(X, 𝑡) = 𝜕Ψ

𝜕F
( 𝜕𝝓
𝜕X

(X, 𝑡)), PE(𝝓 (·, 𝑡)) =
∫
Ω0

Ψ( 𝜕𝝓
𝜕X

)𝑑X (4)

where PE(𝝓 (·, 𝑡)) is the potential energy of the material when it is
in the configuration defined by the flow map at time 𝑡 . Note that
we will typically use F =

𝜕𝝓
𝜕X to denote the spatial derivative of the

flow map (or deformation gradient). We refer the reader to [Bonet
and Wood 2008; Gonzalez and Stuart 2008] for more continuum
mechanics detail.

In quasistatic problems, the inertial terms in the momentum bal-
ance (Equation (1)) can be neglected and the material motion is
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defined by a sequence of equilibrium problems

0 = ∇X · P + fext (5)

subject to the boundary conditions in Equations (2)-(3). This is
equivalent to the minimization problems

𝝓 (·, 𝑡) = argmin
𝚼 ∈ W𝑡 PE(𝚼) −

∫
Ω0

fext · 𝚼𝑑X −
∫
𝜕Ω0

N̂

T · 𝚼𝑑𝑠 (X)

(6)

whereW𝑡 =

{
𝚼 : Ω0 → R𝑑

��
𝚼(X) = x𝐷 (X, 𝑡), X ∈ 𝜕Ω0

𝐷

}
. We note

that even though the velfocity does not affect the quasistatic equilib-
rium equations in Equation (5), the time dependence in the boundary
conditions gives rise to solutions 𝝓 (X, 𝑡) that change with respect
to time.

3.1 Constitutive Models
We demonstrate our approach with a number of different hyperelas-
tic potentials commonly used in computer graphics applications. The
“corotated" or “warped stiffness" model [Chao et al. 2010; Etzmuss
et al. 2003; Müller et al. 2002; Müller and Gross 2004; Schmedding
and Teschner 2008] has been used for many years with a few varia-
tions. We use the version with the fix to the volume term developed
by Stomakhin et al. [2012]

Ψcor (F) = 𝜇 |F − R(F) |2𝐹 + 𝜆
2
(det(F) − 1)2 . (7)

Here F = R(F)S(F) is the polar decomposition of F. Neo-Hookean
models [Bonet and Wood 2008] have also been used since they do
not require polar decomposition and recently some of them have
been shown to have favorable behavior with nearly incompressible
materials [Smith et al. 2018].

Ψnh (F) = 1
2
𝜇 |F|2𝐹 + 𝜆

2
(det(F) − 1 − 𝜇

𝜆
)2 . (8)

Here 𝜆 = 𝜇 + 𝜆. 𝜆 and 𝜇 are the Lamé parameters and are related to
the Young’s modulus (𝐸) and Poisson’s ratio (𝜈) as

𝜇 =
𝐸

2(1 + 𝜈) , 𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) . (9)

Note that we distinguish between the 𝜆 used in Macklin and Müeller
[2021] and the Lamé parameter 𝜆; we discuss the reason for this in
more detail in Section 9. We also support the stable Neo-Hookean
model proposed in [Smith et al. 2018]

Ψsnh (F) = 1
2
𝜇 ( |F|2𝐹 − 𝑑) + 1

2
(det(F) − 1 − 3𝜇

4𝜆
)2 − 1

2
𝜇 log(1 + |F|2𝐹 ).

(10)

4 DISCRETIZATION
We use the FEM discretization of the quasistatic problem in Equa-
tion (5)

f𝑖 (x𝑛+1) + f̂ext𝑖 = 0, X𝑖 ∉ Ω0
𝐷

(11)

x𝑛+1
𝑖 = x𝐷 (X𝑖 , 𝑡

𝑛+1), X𝑖 ∈ Ω0
𝐷 . (12)

Here the flow map is discretized as 𝝓 (X, 𝑡𝑛+1) = ∑𝑁𝑉 −1
𝑗=0 x𝑛+1

𝑗
𝜒 𝑗 (X)

where the 𝜒 𝑗 (X) are piecewise linear interpolating functions defined
over a tetrahedron mesh (𝑑 = 3) or triangle mesh (𝑑 = 2), and

x𝑛+1
𝑗

∈ R𝑑 , 0 ≤ 𝑗 < 𝑁𝑉 are the locations of the vertices of the mesh

at time 𝑡𝑛+1. Note that we use x𝑛+1 ∈ R𝑑𝑁𝑉
to denote the vector of

all vertex locations and 𝑥𝑛+1
𝑖𝛽

to denote the 0 ≤ 𝛽 < 𝑑 components
of the position of vertex 𝑖 in the mesh. The forces are given as

f𝑖 (y) = − 𝜕P̂E
𝜕y𝑖

(y) (13)

P̂E(y) = P̂EΨ (y) + P̂Ewc (y) (14)

P̂EΨ (y) =
𝑁𝐸−1∑︁
𝑒=0

Ψ(
𝑁𝑉 −1∑︁
𝑗=0

y𝑗
𝜕𝜒 𝑗

𝜕X
(X𝑒 ))𝑉 0

𝑒 (15)

f̂ext𝑖 =

∫
Ω0

fext𝜒𝑖𝑑X +
∫
𝜕Ω0

N̂

T𝜒𝑖𝑑𝑠 (X) (16)

where P̂EΨ : R𝑑𝑁
𝑉 → R is the discretization of the potential

energy,
∑𝑁𝑉 −1

𝑗=0 y𝑗
𝜕𝜒 𝑗
𝜕X (X𝑒 ) is the deformation gradient induced by

nodal positions y ∈ R𝑑𝑁𝑉
in tetrahedron (𝑑 = 3) or triangle (𝑑 =

2) element 𝑒 with 0 ≤ 𝑒 < 𝑁𝐸 , 𝜕𝜒𝑖
𝜕X (X𝑒 ) is the derivative of the

interpolating function in element 𝑒 (which is constant since we
use piecewise linear interpolation) and 𝑉 0

𝑒 is the measure of the
element. We refer the reader to [Bonet and Wood 2008; Sifakis and
Barbic 2012] for more detail on the FEM derivation of potential
energy terms in a hyperelastic formulation. Also, note that we add
another term to the discrete potential energy P̂Ewc : R𝑑𝑁

𝑉 → R
in Equation (14) to account for self-collisions and similar weak
constraints (see Section 4.1). Similar to the non-discrete case, the
constrained minimization problem

x𝑛+1 =
argmin

y ∈ W𝑛+1
Δ𝑥

P̂E(y) − y · f̂ext (17)

whereW𝑛+1
Δ𝑥 =

{
y ∈ R𝑑𝑁𝑉 ��y𝑖 = x𝐷 (X𝑖 , 𝑡

𝑛+1), X𝑖 ∈ 𝜕Ω0
𝐷

}
is equiv-

alent to Equations (11)-(12).

4.1 Weak Constraints
We support weak constraints for self-collision and other similar
purposes (as in [McAdams et al. 2011]). These are terms added to
the potential energy in the form

P̂Ewc (y) = 1
2

𝑁wc−1∑︁
𝑐=0

C𝑐 (y)𝑇K𝑐C𝑐 (y) (18)

C𝑐 (y) =
𝑁𝑉 −1∑︁
𝑗=0

𝑤𝑐
0𝑗y0𝑗 −𝑤𝑐

1𝑗y1𝑗 . (19)

Here the 𝑤𝑐
0𝑗 ,𝑤

𝑐
1𝑗 are interpolation weights that sum to one and

are non-negative. This creates constraints between the interpo-
lated points

∑𝑁𝑉 −1
𝑗=0 𝑤𝑐

0𝑗y0𝑗 and
∑𝑁𝑉 −1

𝑗=0 𝑤𝑐
1𝑗y1𝑗 . The stiffness of

the constraint is represented in the matrix K𝑐 . This can allow for
anisotropic responses where K𝑐 = 𝑘𝑛nn𝑇 + 𝑘𝜏

(
𝝉0𝝉𝑇0 + 𝝉1𝝉𝑇1

)
. Here

n𝑇𝝉𝑖 = 0, 𝑖 = 0, 1 and 𝑘𝑛 is the stiffness in the n direction while
𝑘𝜏 is the stiffness in response to the motion in the plane normal
to n. 𝝉𝑇0 𝝉1 = 0 and | |𝝉𝑖 | | = 1, 𝑖 = 0, 1. In the case of an isotropic
constraint (𝑘𝑐 = 𝑘𝑛 = 𝑘𝜏 ), we use the scalar 𝑘𝑐 in place of K𝑐 since
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K𝑐 = 𝑘𝑐 I is diagonal. We note that, in most of our examples, the
anisotropic model is used for collision constraints where n is the
collision constraint direction.

5 GAUSS-SEIDEL NOTATION
Our approach, PBD and XPBD all use nonlinear Gauss-Seidel to
iteratively improve an approximation to the solution x𝑛+1 ∈ R𝑑𝑁𝑉

of Equation (11) (or equivalently, Equation (17)). Here we introduce
detailed notation to help clarify the specific details of our method
as well as its convergence behaviors. We refer to one Gauss-Seidel
iteration as the process of updating all vertices once and use 𝑙 to
denote the iteration count as x𝑛+1,𝑙 ≈ x𝑛+1. During the course of
one Gauss-Seidel iteration, individual vertex degrees of freedom in
the approximate solution will be updated in sub-iterates (indexed
by 𝑘) which we denote as x𝑛+1,𝑙

(𝑘 ) ∈ R𝑑𝑁𝑉
with 0 ≤ 𝑘 < 𝑁𝐺𝑆 . For

example, x𝑛+1,𝑙
(0) = x𝑛+1,𝑙 and x𝑛+1,𝑙

(𝑁𝑉 −𝑁𝐷−1) = x𝑛+1,𝑙+1 for PBNG. To

further clarify, with PBD/XPBD in the 𝑘th sub-iterate, the nodes
in the 𝑘th constraint will be projected/solved for and so 𝑁𝐺𝑆 will
be equal to the total number of constraints. In our position-based
approach, in the 𝑘th sub-iterate, only the 𝑑 components of a single
node 𝑖𝑘 will be updated. It is important to introduce this notation,
since unlike with Jacobi-based approaches, the update of the 𝑘th
sub-iterate will depend on the contents of the 𝑘 − 1th sub-iterate.

6 POSITION-BASED DYNAMICS: CONSTRAINT-BASED
NONLINEAR GAUSS-SEIDEL

Macklin et al. [2016] show that PBD [Müller et al. 2007] can be seen
to be the extreme case of a numerical method for the approximation
of the backward Euler temporal discretization of the FEM spatial
discretization of Equation (1)

𝑁𝑉 −1∑︁
𝑗=0

𝑚𝑖 𝑗

(
x𝑛+1
𝑗

− 2x𝑛
𝑗
+ x𝑛−1

𝑗

Δ𝑡2

)
= f𝑖 (x𝑛+1) + fext𝑖 , X𝑖 ∉ Ω0

𝐷
. (20)

Here𝑚𝑖𝑖 =
∫
Ω0 𝑅

0𝜒𝑖𝑑X and𝑚𝑖 𝑗 = 0, 𝑗 ≠ 𝑖 are entries in the mass
matrix. However, Macklin et al. [2016] require that the discrete
potential energy in Equation (15) is of the form

𝑃𝐸
Ψ (y) =

2𝑁𝐸−1∑︁
𝑐=0

1
2𝛼𝑐

𝐶2
𝑐 (y), y ∈ R𝑑𝑁

𝐸

. (21)

To demonstrate the connection between Equation (20) and PBD,
Macklin et al. [2016] develop XPBD. It is based on the total Lagrange
multiplier formulation

𝑁𝑉 −1∑︁
𝑗=0

𝑚𝑖 𝑗

(
x𝑛+1
𝑗 − x̂𝑗

)
−

𝑃−1∑︁
𝑐=0

𝜕𝐶𝑐

𝜕x𝑖
(x𝑛+1)𝜆𝑛+1

𝑐 = 0, X𝑖 ∉ Ω0
𝐷

(22)

𝐶𝑐 (x𝑛+1) + 𝛼𝑐

Δ𝑡2
𝜆𝑛+1
𝑐 = 0, 0 ≤ 𝑐 < 𝑃 (23)

where x̂𝑗 = 2x𝑛
𝑗
−x𝑛−1

𝑗
− Δ𝑡2

𝑚 𝑗 𝑗
fext
𝑗

and 𝝀𝑛+1 ∈ R𝑃 is introduced as an

additional unknown. The x𝑛+1 ∈ R𝑑𝑁𝑉
in Equations (22)-(23) is the

same in the solution to Equation (20). 𝑃 is the number of constraints.
Macklin et al. [Macklin et al. 2016] use a per-constraint Gauss-Seidel

update of Equations (22)-(23)

x𝑛+1,𝑙
𝑖 (𝑘+1) = x𝑛+1,𝑙

𝑖 (𝑘 ) + Δx𝑛+1,𝑙
𝑖 (𝑘+1) , X𝑖 ∉ Ω0

𝐷 (24)

Δx𝑛+1,𝑙
𝑖 (𝑘+1) =

Δ𝜆𝑛+1,𝑙
(𝑘+1)𝑐𝑘
𝑚𝑖𝑖

𝜕𝐶𝑐𝑘

𝜕x𝑖
(x𝑛+1,𝑙

(𝑘 ) ) (25)

Δ𝜆𝑛+1,𝑙
(𝑘+1)𝑐𝑘

=
−𝐶𝑐𝑘 (x

𝑛+1,𝑙
(𝑘 ) ) + 𝛼𝑐𝑘

Δ𝑡2𝐶𝑐𝑘 (x
𝑛+1,𝑙
(𝑘 ) )∑𝑁𝑉 −1

𝑗=0
1

𝑚 𝑗 𝑗

∑𝑑−1
𝛽=0

(
𝜕𝐶𝑐𝑘

𝜕𝑥 𝑗𝛽
(x𝑛+1,𝑙

(𝑘 ) )
)2

+ 𝛼𝑐𝑘
Δ𝑡2

. (26)

Here the 𝑘 + 1th sub-iterate in iteration 𝑙 is generated by solving
for the change in a single Lagrange multiplier Δ𝜆𝑛+1,𝑙

(𝑘+1)𝑐𝑘
associated

with a constraint 𝑐𝑘 that varies from sub-iteration to sub-iteration.
However, as pointed out in [Chen et al. 2023], this Gauss-Seidel
procedure does not converge to a solution of Equation (20). [Chen
et al. 2023] isolates the root cause of this as the omission of the
residual of Equation (22) in the update of the Lagrange multiplier
in Equation (26) and moreover that inclusion of the residual in the
update leads to unstable behavior. We demonstrate this behavior
and contrast with our approach in Figure 3.

6.1 Quasistatics
As noted byMacklin et al. [2016], the XPBD update in Equations (24)-
(26) is the same as in the original PBD [Müller et al. 2007] in the limit
𝛼𝑐 → 0. By choosing a stiffness inversely proportionate to a parame-
ter 𝑠 ≥ 0 and examining the limiting behavior of the equations being
approximated, we see that the original PBD approach generates an
approximation to the quasistatic problem (Equations (5)), albeit with
the external forcing terms omitted. More precisely, define 𝝓𝑠 to be
a solution of the problem

𝑠𝑅0 𝜕
2𝝓𝑠
𝜕𝑡2

= ∇X · P + 𝑠fext . (27)

subject to the same boundary conditions in Equations (2)-(3). This
is equivalent to scaling the 𝛼𝑐 that would appear in Equation (1)
(through P) by 𝑠 . The 𝛼𝑐 are inversely proportionate to the Lamé
parameters, so as 𝑠 → 0, the material stiffness increases. Since the
inertia and external force terms in Equation (27) vanish as 𝑠 → 0, it
is clear then that the original PBD formulation generates an approx-
imation to the solution of a quasistatic problem with the external
forcing fext omitted. Note that PBD does include the external forcing
term in its initial guess x𝑛+1

𝑖
= x𝑛

𝑖
+ Δ𝑡v𝑛

𝑖
+ Δ𝑡2

𝑚𝑖𝑖
fext
𝑖

. However, the
effect of the initial guess vanishes as the iteration count is increased.
We demonstrate this in Section 9.3 of the paper. Also, note that this
is not the case in the XPBD formulation where 𝛼𝑐 > 0, as it is the
inverse stiffness term.
Unfortunately, XPBD cannot be trivially modified to run qua-

sistatic problems. For example, omitting the mass terms on the
left-hand side of Equation (22) makes the Gauss-Seidel update in
Equations (24)-(26) impossible since there would be a division by
zero. The simplest fix for quasistatic problems with XPBD is to run
to steady state using a pseudo-time iteration as in [Chentanez et al.
2020]. This prevents the need for scaling the 𝛼𝑐 which inherently
removes the external forcing terms and does not introduce a divide
by zero in Equation (25). However, this is very costly since each qua-
sistatic time step is essentially the cost of an entire XPBD simulation.
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Fig. 2. PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent behavior with XPBD and quasistatics. A zoom-in view under the right
armpit region is provided. Each method is run for 130 iterations. PBNG converges to the desired solution, binding the muscles closely together. XPBD-QS
and XPBD-QS (Flipped) fail to converge, leaving either artifacts or gaps between the muscles. Details on XPBD-QS and XPBD-QS (Flipped) can be found in
Section 11.

We refer to this technique as XPBD-QS (see 11.3 for example). In ad-
dition to the excessive cost of this approach, we also observe severe
iteration-order dependent behavior of XPBD-QS in the presence
of spatially varying constraints and where constraints of different
types affect the same vertices (see Figure 2). We believe the omission
of the primary residual noted by Chen et al. [2023] is the cause of
this iteration-dependent behavior. Intuitively, the Gauss-Seidel up-
date would have information about adjacent constraints if it could
be added stably.
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Fig. 3. Left. Clamped blocks under gravity. The green block is XPBD, and
the yellow one is PBNG. Right. PBNG is able to reduce the Newton residual
to the tolerance, whereas XPBD’s residual stagnates.

7 POSITION-BASED NONLINEAR GAUSS-SEIDEL
To fix the issues with PBD/XPBD and quasistatics, we abandon the
Lagrange-multiplier formulation and approximate the solution of
Equation (11) using position-centric, rather than constraint-centric
nonlinear Gauss-Seidel. This update takes into account each con-
straint that the position participates in. Visual intuition for this is
illustrated in Figure 6(a). More specifically, in the 𝑘th sub-iterate of
iteration 𝑙 , we modify a single node 𝑖𝑘 with X𝑖𝑘 ∉ 𝜕Ω0

𝐷
as

x𝑛+1,𝑙
(𝑘+1)𝑖𝑘

= x𝑛+1,𝑙
(𝑘 )𝑖𝑘

+ Δx𝑛+1,𝑙
(𝑘+1)𝑖𝑘

(28)

Δx𝑛+1,𝑙
(𝑘+1)𝑖𝑘

=
argmin
Δy ∈ R𝑑 𝑃𝐸 (x𝑛+1,𝑙

(𝑘 ) + C̃𝑖𝑘Δy) − Δy · f̂ext𝑖𝑘
.

Here C̃𝑖𝑘 ∈ R𝑑𝑁𝑉 ×𝑑 is a selection matrix that isolates the degrees
of freedom on the node 𝑖𝑘 and has entries𝐶𝑖𝑘

𝑗𝛼𝛽
= 𝛿 𝑗𝑖𝑘𝛿𝛼𝛽 . We solve

this minimization by setting the gradient to zero

0 = f𝑖𝑘 (x
𝑛+1,𝑙
(𝑘 ) + C̃𝑖𝑘Δx𝑛+1,𝑙

(𝑘+1)𝑖𝑘
) + f̂ext𝑖𝑘

. (29)

We use a single step of a modified Newton’s method to approx-
imate the solution of Equation (29) for Δx𝑛+1,𝑙

(𝑘+1)𝑖𝑘
∈ R𝑑 . We use

Δx𝑛+1,𝑙
(𝑘+1)𝑖𝑘

= 0 as the initial guess. We found that using more than
one iteration did not significantly improve robustness or conver-
gence. Our update is of the form

Δx𝑛+1,𝑙
(𝑘+1)𝑖𝑘

=

(
A𝑛+1,𝑙
(𝑘+1)𝑖𝑘

)−1 (
f𝑖𝑘 (x

𝑛+1,𝑙
(𝑘 ) ) + f̂ext𝑖𝑘

)
. (30)

Here A𝑛+1,𝑙
(𝑘+1)𝑖𝑘

≈ − 𝜕f𝑖𝑘
𝜕y𝑖𝑘

(x𝑛+1,𝑙
(𝑘 ) ) ∈ R𝑑×𝑑 is an approximation to the

potential energy Hessian/negative force gradient.

7.1 Modified Hessian
We choose the modified energy Hessian A𝑛+1,𝑙

(𝑘+1)𝑖𝑘
to minimize its

computational cost. The true Hessian
𝜕f𝑖𝑘
𝜕y𝑖𝑘

∈ R𝑑×𝑑 has entries

𝜕𝑓𝑖𝑘𝛼

𝜕𝑦𝑖𝑘𝛽
(y) = −

𝑁𝐸−1∑︁
𝑒=0

𝑑−1∑︁
𝛿,𝛾=0

C𝑒
𝛼𝛾𝛽𝛿

(y)
𝜕𝑁 𝑒

𝑖𝑘

𝜕𝑋𝛾

𝜕𝑁 𝑒
𝑖𝑘

𝜕𝑋𝛿
𝑉 0
𝑒 − (31)

𝑁wc−1∑︁
𝑐=0

(
𝑤𝑐

0𝑖𝑘 −𝑤𝑐
1𝑖𝑘

)2
𝐾𝑐𝛼𝛽 , 0 ≤ 𝛼, 𝛽 < 𝑑

where C𝑒
𝛼𝛾𝛽𝛿

(y) = 𝜕2Ψ
𝜕𝐹𝛽𝛿 𝜕𝐹𝛼𝛾

(∑𝑁𝑉 −1
𝑗=0 y𝑗

𝜕𝑁 𝑒
𝑗

𝜕X ) is the Hessian of the
potential energy density evaluated at the deformation gradient in
element 𝑒 and 𝐾𝑐𝛼𝛽 is the stiffness tensor associated with weak-
constraints.

The primary cost in Equation (31) is the evaluation of the Hessian
of the energy density C𝑒

𝛼𝛾𝛽𝛿
(y) which is a symmetric fourth order

tensor with𝑑2×𝑑2 entries. Furthermore, this tensor can be indefinite,
which would complicate the convergence of the Newton procedure.
We use a definiteness projection as in [Teran et al. 2005] and [Smith
et al. 2019]. However, we use a very simple symmetric positive
definite approximation that (unlike [Smith et al. 2019; Teran et al.
2005]) does not require the singular value decomposition of the
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element deformation gradient
∑𝑁𝑉 −1

𝑗=0 y𝑗
𝜕𝑁 𝑒

𝑗

𝜕X . Also note that Teran
et al. [2005] also require the solution of a 3 × 3 and three 2 × 2
symmetric eigenvalue problems; our approach does not require this.
Our simple approximation is

C̃𝑒
𝛼𝛾𝛽𝛿

(y) = 2𝜇𝛿𝛼𝛽𝛿𝛾𝛿 + 𝜆𝐽 (𝐹𝑒 )−1
𝛼𝛾 (y) 𝐽 (𝐹𝑒 )−1

𝛽𝛿
(y) . (32)

Here 𝐽F𝑒 (y) = det(F𝑒 (y) (F𝑒 )−𝑇 (y) is the cofactor matrix of the
element deformation gradient F𝑒 (y) =

∑𝑁𝑉 −1
𝑗=0 y𝑗

𝜕𝑁 𝑒
𝑗

𝜕X . We note
that the cofactor matrix is defined for all deformation gradients
F𝑒 , singular, inverted (negative determinant) or otherwise. This is
essential for robustness to large deformation. We note that this
approximation works for any isotropic potential energy density Ψ
where 𝜇 and 𝜆 are the associated Lamé parameters computed from
Young’s modulus 𝐸. We discuss the motivation for this simplification
in [Anonymous 2023], but note here that it is clearly positive definite
since it is a scaled version of the identity with a rank-one update
from the cofactor matrix. With this convention, our symmetric
positive definite modified nodal Hessian is of the form

𝐴𝑛+1
(𝑘+1)𝑖𝑘𝛼𝛽 =

𝑁𝐸−1∑︁
𝑒=0

𝑑−1∑︁
𝛿,𝛾=0

C̃𝑒
𝛼𝛾𝛽𝛿

(x𝑛+1,𝑙
(𝑘 ) )

𝜕𝑁 𝑒
𝑖𝑘

𝜕𝑋𝛾

𝜕𝑁 𝑒
𝑖𝑘

𝜕𝑋𝛿
𝑉 0
𝑒 + (33)

𝑁wc−1∑︁
𝑐=0

(
𝑤𝑐

0𝑖𝑘 −𝑤𝑐
1𝑖𝑘

)2
𝐾𝑐𝛼𝛽 , 0 ≤ 𝛼, 𝛽 < 𝑑. (34)

7.2 Collision against kinematic bodies
We add support for hard collision constraints against kinematic
geometry (collision bodies that do not deform). At the beginning
of each time step, each vertex x𝑖 detects its closest point x̄𝑖 on the
kinematic body. We use n𝑖 to denote the unit outward normal to the
collision body at the closest point. x𝑖 is then classified as penetrating
if (x𝑖 − x̄𝑖 ) · n𝑖 < 0. For each penetrating x𝑖 , we project it to x̄𝑖
before the simulation. Then for each PBNG iteration, we check if
Δx𝑛,𝑙(𝑘 )𝑖 ·n𝑖 < 0. If so, we project Δx𝑛,𝑙(𝑘 )𝑖 to Δx̄

𝑛,𝑙

(𝑘 )𝑖 = (I−n𝑖n𝑇𝑖 )Δx
𝑛,𝑙

(𝑘 )𝑖
to allow for sliding tangential to the constraint surface.

7.3 SOR and Chebyshev Iteration
PBNG is remarkably stable and gives visually plausible results when
the computational budget is limited, but it is also capable of produc-
ing numerically accurate results as the budget is increased. However,
as withmost Gauss-Seidel approaches the convergence rate of PBNG
may decrease with iteration count (see Figure 12 for details). We in-
vestigated two simple acceleration techniques to help mitigate this:
the Chebyshev semi-iterative method (as in [Wang 2015]) and SOR
(as in [Fratarcangeli et al. 2016]). The Chebyshevmethod uses the up-
date x𝑛+1,𝑙+1 = 𝜔𝑙+1 (𝛾 (x𝑛+1,𝑙+1

PBNG −x𝑛+1,𝑙 )+x𝑛+1,𝑙−x𝑛+1,𝑙−1)+x𝑛+1,𝑙−1.
where x𝑛+1,𝑙+1 denotes the accelerated update and x𝑛+1,𝑙+1

PBNG denotes
the standard PBNG update. Here 𝜔𝑙+1 = 4

4−𝜌2𝜔𝑙
for 𝑙 > 2, 2

2−𝜌2

for 𝑙 = 2 and 1 for 𝑙 < 2. 𝛾 is an under-relaxation parameter that
stabilizes the algorithm. For our examples, we set 𝜌 = .95. PBNG is
very stable, and this allows for the use of over-relaxation as well.
We set 𝛾 = 1.7. The SOR method uses a similar, but simpler update
x𝑛+1,𝑙+1 = 𝜔 (x𝑛+1,𝑙+1

PBNG − x𝑛+1,𝑙−1) + x𝑛+1,𝑙−1. We use 𝜔 = 1.7 for this

under-relaxation parameter. Chebyshev and SOR behave similarly
in terms of residual reduction and visual appearance (see Figure 12).

8 CLOTH SIMULATION
Our method can also naturally handle cloth simulation by adding a
surface mesh contribution P̃E(y) directly to the potential energy in
Equation (17). We use the sum of a membrane hyperelastic potential
and a bending term:

P̃E(y) =
∑︁
𝑡

Ψcm (Fmem
𝑡

(y))𝐴𝑡 +
1
2
𝑘𝑏

∑︁
𝑒

𝜃𝑒 (y)2 . (35)

The membrane term is a simple generalization of the fixed corotated
model [Stomakhin et al. 2012] to the case of surfaces

Ψcm (Fmem) = 𝜇cm |Fmem − R(Fmem) |2𝐹 + 𝜆
cm

2
(𝐽 (Fmem) − 1)2 .

(36)

Here 𝜇cm and 𝜆cm are derived from Young’s modulus 𝐸cm in a sim-
ilar fashion as 𝜇 and 𝜆 in Section 7. Fmem

𝑡
(y) =

∑
𝑖 y𝑖

𝜕𝜒𝑖
𝜕X (X𝑡 ) ∈

R3×2 is the deformation gradient computed over the triangle 𝑡
where 𝜒𝑖 are piecewise linear interpolating functions over the tri-
angles. 𝐴𝑡 is the reference area of the triangle 𝑡 and 𝐽 (Fmem) =√︁

det(Fmem𝑇 Fmem) denotes the multiplicative change in the trian-
gle area under motion defined by y. The term R(Fmem) in Equa-
tion (36) is the rotational part of the polar decomposition of Fmem =

R(Fmem)S(Fmem) with the convention that R(Fmem) ∈ R3×2 has
orthogonal columns and S(Fmem) ∈ R2×2 is symmetric.
For bending resistance in Equation (35), we adopt a similar ap-

proach to Baraff and Witkin [1998]. For each edge 𝑒 with ver-
tices y0

𝑒 , y1
𝑒 that is incident to two triangles with unit normals

n1
𝑒 (y), n2

𝑒 (y), we define 𝜃𝑒 (y) ∈ [0, 𝜋) as the bending angle where
𝜃𝑒 (y) = atan( (n

1
𝑒 (y)×n2

𝑒 (y) ) · (y1
𝑒−y0

𝑒 )
n1
𝑒 (y) ·n2

𝑒 (y)
). 𝑘𝑏 is the bending stiffness pa-

rameter. Note that as in [Baraff and Witkin 1998], we do not use an
area weighting on the bending term.

8.1 Modified Hessian
Similar to Section 7.1, we modify the Hessians of the above models
to ensure positive semi-definiteness. We make the simple approxi-
mation 𝜕2Ψcm

𝜕𝐹mem
𝛼𝛾 𝜕𝐹mem

𝛽𝛿

(y) ≈ 2𝜇cm𝛿𝛼𝛽𝛿𝛾𝛿 + 𝜆cm

4 𝐽 2𝐿mem
𝛼𝛾 𝐿mem

𝛽𝛿
where

Lmem = Fmem ((Fmem)𝑇 Fmem)−𝑇 +Fmem ((Fmem)𝑇 Fmem)−1. For the
bending model, we use the rank one approximation

1
2
𝜕2𝜃2

𝑒

𝜕x2 ≈ 𝜕𝜃𝑒

𝜕x
⊗ 𝜕𝜃𝑒

𝜕x
. (37)

The bending potential in Equation (35) is quadratic in 𝜃𝑒 so a rank-
one term consisting of the outer-product in Equation (37) is a simple
PSD Hessian approximation. See the supplemental technical docu-
ment for more details [Anonymous 2023].

8.2 Multiresolution Acceleration
When a solid and a piece of cloth have the same particle count,
the max topological distance between the particles in the cloth is
bigger than that in the solid because a cloth is essentially a 2D object.
Since Gauss-Seidel only does local updates, it needs to propagate
information further for cloth to converge. In practice, cloth will look
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Fig. 4. MPBNG Illustration. We visualize the cloth multi-resolution hierar-
chy. Straight lines illustrate constraints between vertices on the finer level
to their targets on the coarser level.

overly stretchywhen propagation has not proceeded sufficiently (see
Section 11.5.). This slowed convergence with increased resolution
is the motivation for techniques like multigrid [Brandt 1977; Wang
et al. 2018]. We develop a multiresolution techniques along these
lines: MPBNG (or multilayer PBNG). For a given piece of cloth 𝜒0,
we remesh it to create a nested mesh hierarchy 𝜒0 ⊃ 𝜒1 ⊃ 𝜒2 ⊃ 𝜒𝑛 .
Usually the number of vertices is reduced by approximately a factor
of 4. These layers equally divide the stiffness and mass density of
the original material as in a multi-species continua model [Atkin
and Craine 1976]. We then bind each two successive layers using
weak constraints (Equation (15)) and define a multi-layer iteration
as follows: 4-6 PBNG iterations are first applied on the coarsest
level. Then all particles on ∪𝑖≠𝑛 𝜒𝑖 are iterated over in a standard
PBNG manner. This is done in parallel, utilizing coloring that takes
into account all layers and the constraints between them. After
the multi-layer iterations have been applied, we do a final pass of
6-8 PBNG iterations on the finest layer. The weak constraints are
visualized in Figure 4. Note that we found this three-pass approach
to be more effective than a standard multigrid V-cycle in practice.
After each multiresolution iteration 𝑙 , we reduce the stiffness

of the weak constraints and the mass on the coarse layers. We

define a scaling factor 𝜅𝑙 =
√︂

1 − 𝑙2

𝑟 2
des

where 𝑟des is a user-specified

radius of descent. We choose 𝑟des = 𝑘max + 𝑟pad where 𝑘max is the
maximal number of iterations and 𝑟pad ∈ [.05, 2]. In practice, 𝑟pad
does require much tuning and 𝑟pad = .05 typically suffices. This
factor is multiplied to the mass of the nodes on the coarse layers (i.e.
all layers except 𝜒0) and 𝑘𝑐 of all weak constraints. As 𝑙 becomes
larger, 𝜅𝑙 decreases to a small number, which means the problems
converges to the original one. The same approach can be applied
to solid simulation as well, however we observed that MPBNG

Fig. 5. Multiresolution Dress. We illustrate the multiresolution meshes
used with our MPBNG approach in a representative clothing simulation.

achieves less residual reduction than PBNG in this case (with a fixed
computational budget).

9 LAMÉ COEFFICIENTS
The parameters of an isotropic constitutive model are often based
on Lamé coefficients 𝜇 and 𝜆 which are themselves set from Young’s
modulus 𝐸 and Poisson’s ratio 𝜈 according to Equation (9). This
relationship is based on the assumption of linear dependence of
stress on strain, or quadratic potential energy density

Ψle (F) = 𝜇tr(𝝐2 (F)) + 𝜆
2
tr(𝝐 (F))2 (38)

𝝐 =
1
2
(F + F𝑇 ) − I. (39)

Furthermore, Equation (9) is derived from the model in Equation (38)
by holding one end of a cuboidal domain fixed and applying a
displacement at its opposite end. The remaining faces of the domain
are assumed to be traction-free. Young’s modulus is the scaling in a
linear relationship between the traction exerted by the material in
resistance to the displacement. The Poisson’s ratio correlates with
the degree of volume preservation via deformation in the directions
orthogonal to the applied displacement.

The use of Lamé coefficients with nonlinear models is not directly
analogous since the relation between displacement and traction is
not a linear scaling in the cuboid example. When using Lamé co-
efficients with nonlinear problems, the cuboid derivation should
hold if the model were linearized around F = I. All isotropic hypere-
lastic constitutive models can be written in terms of the isotropic
invariants 𝐼𝛼 : R𝑑×𝑑 → R, 0 ≤ 𝛼 < 𝑑

𝐼0 (F) = tr(F𝑇 F), 𝐼1 (F) = tr((F𝑇 F)2), 𝐼2 (F) = det(F) (40)

Ψ(F) = Ψ̂(𝐼0 (F), 𝐼1 (F), 𝐼2 (F)) . (41)

See [Gonzalez and Stuart 2008] for more detailed derivation. Note,
when 𝑑 = 2, 𝐼1 (F) = tr((F𝑇 F)2) is not used. With this convention,
the Hessian of the potential energy density is of the form

𝜕2Ψ

𝜕F2 =

𝑑−1∑︁
𝛼=0

𝜕Ψ̂

𝜕𝐼𝛼

𝜕2𝐼𝛼
𝜕F2 +

𝑑−1∑︁
𝛼,𝛽=0

𝜕2Ψ̂

𝜕𝐼𝛼 𝜕𝐼𝛽

𝜕𝐼𝛼

𝜕F
⊗
𝜕𝐼𝛽

𝜕F
. (42)

If Lamé parameters are to be used with a nonlinear model, the Hes-
sian 𝜕2Ψ

𝜕F2 (F) should match that of linear elasticity when evaluated at
F = I. For example, this is why we adjust the Lamé parameters used
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in [Macklin and Muller 2021] in Equation (8). See the supplemental
technical document for derivation details [Anonymous 2023].
We choose our approximate Hessian in Equation 9 in the paper

based on this fact. That is, by omitting all but the first and last
terms in Equation (42), our approximate Hessian is both symmetric
positive definite and consistent with any model that is set from
Lamé coefficients (e.g. from Young’s modulus and Poisson’s ratio)

C̃ = 𝜇
𝜕2𝐼0
𝜕F2 + 𝜆 𝜕𝐼𝑑−1

𝜕F
⊗ 𝜕𝐼𝑑−1

𝜕F
. (43)

Again, see the supplemental technical document for derivation de-
tails [Anonymous 2023].

10 COLORING AND PARALLELISM
Parallel implementation of Gauss-Seidel techniques is complicated
by data dependencies in the updates. This can be alleviated by
careful ordering of sub-iterate position updates. We provide simple
color-based orderings for both PBD and PBNG techniques. For PBD,
colors are assigned to constraints so that those in the same color do
not share incident nodes. Constraints in the same color can then be
solved at the same time with no race conditions. For each vertex x𝑖
in the mesh, we maintain a set 𝑆x𝑖 that stores the colors used by its
incident constraints. For each constraint 𝑐 , we find the minimal color
as the least integer that is not contained in the set ∪x𝑖 ∈𝑐𝑆x𝑖 . We
then register the color by adding it into 𝑆x𝑖 for each x𝑖 in constraint
𝑐 . With PBNG, we color the nodes so that those in the same color do
not share any mesh element or weak constraint. For each element
or weak constraint 𝑐 , we maintain a set 𝑆𝑐 that stores the colors
used by its incident nodes. For a position x𝑖 , we compute its color as
the minimal one not contained in the set ∪x𝑖 ∈𝑐𝑆𝑐 . Then we register
the color by adding it into 𝑆𝑐 for each element or weak constraint
x𝑖 is incident to. We observe that coloring the nodes instead of the
constraints gives fewer colors. This makes simulations run faster
since more work can be done without race conditions. We provide
more details on the coloring process in Figure 6. The performance
gain is listed in Table 1. Note that we use the omp parallel directive
from Intel’s OpenMP library for parallelizing the updates.

10.1 Collision Coloring
For simulations with static weak constraints, the coloring is a one-
time cost. Otherwise, the colors have to be updated every time
the weak constraint structure changes, e.g. from self-collision (see
[Anonymous 2023]). We propose a simple coloring scheme for this
purpose: only nodes incident to the newly added weak constraints
need recoloring.We first compute all nodes xextra

𝑖
that are incident to

newly added weak constraints. For each xextra
𝑖

, we compute the used
color set ∪xextra

𝑖
∈𝑐𝑆𝑐 . We use the color of xextra

𝑖
from the previous

time step as an initial guess. If it already exists in the used color set,
then we find the minimal color that is not used. This is generally of
moderate cost, e.g. in the muscle examples with collisions (Figures 1,
2 and 15), our algorithm takes less than 680ms/frame for recoloring,
while the actual simulation takes a total of 67s to run.

11 EXAMPLES
We demonstrate the versatility and robustness of PBNG with a
number of representative simulations of quasistatic (and dynamic)

hyperelasticity. Examples run with the corotated model used in the
algorithm from [Gast et al. 2016] for its accuracy and efficiency.
Example 11.2.4, 11.5 and 11.6 are dynamic simulations. The rest are
quasistatic simulations. All the examples use Poisson’s ratio 𝜈 = 0.3.
We compare PBNG, PBD, XPBD, XPBD-QS and XPBD-QS (Flipped).
For XPBD-QS we do the hyperelastic constraints first, followed
by weak constraints. For XPBD-QS (Flipped) the order is swapped.
All the examples were run on an AMD Ryzen Threadripper PRO
3995WX CPU using 8 threads. In Table 3, we provide comprehensive
performance statistics for PBNG. In Table 2, we provide runtime
comparisons between PBNG and the other methods. Note that for
efficiency we did not use a line search with Newton’s method in
our experiments. We note adding line search requires evaluating
Newton residuals multiple times, which would further increase cost.
As in Figure 7, line search would further reduce number of Newton
iterations, making it less stable.

11.1 Stretching Block
We stretch and twist a simple block in a simple scenario. The block
has 32K particles and 150K elements. Both ends of the block are
clamped. They are stretched, squeezed and twisted in opposite direc-
tions. The block has 𝑅0 = 10𝑘𝑔/𝑚3 and Young’s modulus 𝐸 = 105𝑃𝑎.
There is no gravity. The simulation is quasistatic. We compare per-
formance between Newton’s method, PBD, PBNG and XPBD as
described in Section 6. In Figure 7, these methods are run under a
fixed budget. Every method has a runtime of 1.3s/frame. With an am-
ple budget, PBNG converges to ground truth, while PBD and XPBD
do not. In Figure 7, we show a simulation where every method has
a runtime of 170ms/frame. Newton’s method is remarkably unsta-
ble. PBNG looks visually plausible. PBD and XPBD-QS have visual
artifacts and fail to converge. Residual plots vs. time are shown at
the bottom of Figure 7.

11.1.1 Resolution Comparison. In this example, we demonstrate
PBNG’s versatility by running the block stretching and twisting
with various resolutions. As shown in Figure 8, the top block has 32K
particles and 150K elements. The middle block has 260K particles
and 1250K elements. The bottom block has 2097K particles and
10242K elements. Even at high-resolution (bottom block), PBNG is
visually plausible after only 40 iterations and 61 seconds/frame of
runtime.

11.1.2 Constitutive Model Comparison. In this example, we apply
PBNG to various constitutive models on the same block examples.
All three blocks have 32K particles and 150K elements. Frames are
shown in Figure 9. The blocks from top to bottom are run with
corotated (Equation 7), stable Neo-Hookean (Equation 10) and Neo-
Hookean (Equation 8) models respectively. With 40 iterations per
frame, they are all visually plausible.

11.1.3 Comparison with Linear Gauss-Seidel. In this example, we
show the superior performance of the nonlinear Gauss-Seidel strat-
egy in PBNG against Newton’s method with linear Gauss-Seidel
used at each iteration (see Figure 10). We compare on a represen-
tative block example with 32K particles and 150K elements. The
simulation is run with both low iteration counts and a high iteration
counts. Note that we match the iteration count instead of runtime,
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(a) (b) (c)

Fig. 6. (a) Dual Coloring . Node based coloring (top) is contrasted with constraint based coloring (bottom). When a node is colored as red, its incident
elements register red as used colors. When a constraint is colored yellow, its incident particles register yellow as used colors. (b) Constraints-Based Coloring.
A step-by-step constraint mesh coloring scheme is shown. The dotted line indicates two weak constraints between the elements. The first constraint is colored
red, all its incident points will register red as a used color. Other constraints incident to the first constraint have to choose other colors. (c) Node-Based
Coloring. A step-by-step node coloring scheme is shown. The constraint register the colors used by its incident particles. The first particle is colored red, so all
its incident constraints will register red as used. Other particles incident to the constraints have to choose other colors.

Table 1. Number of Colors Comparison. Runtime is measured per iteration (averaged over the first 200 iterations). PBNG does more work per-iteration
than PBD, but has comparable speed due to improved scaling resulting from a smaller number of colors.

Example # Vertices # Elements. # Particle Colors # Constraint Colors PBNG Runtime/Iter PBD Runtime/Iter

Res 32 Box Stretching 32K 150K 5 39 28ms 26.8ms
Muscles Without Collisions 284k 1097K 13 82 131ms 140ms
Res 64 Box Stretching 260K 1250K 5 39 65ms 137ms
Res 128 Box Stretching 2097K 10242K 5 40 1520ms 1080ms
Dropping Simple Shapes Into Box 256K 1069K 11 52 270ms 140ms
Res 16 Box Dropping 4.1K 17K 5 39 3.6ms 4.1ms

Table 2. Methods Comparisons. We show runtime per frame for different methods. Each frame is 1
30 seconds.

Example # Vertices # Elements. PBNG Runtime Newton Runtime PBD Runtime PBNG # iter PBD # iter Newton # iter

Box Stretching (low budget) 32K 150K 170ms 170ms 170ms 6 6 2 (7 CGs)
Box Stretching (big budget) 32K 150K 1.3s 1.3s 1.3s 40 40 11 (10 CGs)
Muscle with collisions 284k 1097K 67s 430s - 510 - 34 (200CGs)

Table 3. Performance Table of PBNG. Runtime is measured for each frame (averaged over the course of the simulation). Each frame is written after
advancing time .033.

Example # Vertices # Elements # Triangles PBNG Runtime / Frame PBNG # Iter/Frame # Substeps Model

Box Stretching (low budget) 32K 150K 0 170ms 6 1 Corotated
Box Stretching (big budget) 32K 150K 0 1300ms 40 1 Corotated
Muscle with Collisions 284k 1097K 0 67000ms 510 17 Corotated
Res 64 Box Stretching 260K 1250K 0 1300ms 20 1 Corotated
Res 128 Box Stretching 2097K 10242K 0 61000ms 40 1 Corotated
Dropping Simple Shapes Into Box 256K 1069K 0 49800ms 136 17 Corotated
Two Moving Blocks Colliding 8.2K 33K 0 1630ms 136 17 Corotated
Box Stretching 32K 150K 0 1300ms 40 1 Stable Neo-Hookean
Box Stretching 32K 150K 0 825ms 40 1 Neo-Hookean
Armadillos Dropping 344K 1320K 8K 101200ms 360 9 Corotated

because computation of the explicit matrix and residual for linear
Gauss-Seidel once (620ms) already exceeds the total simulation cost
of PBNG (170ms) in the low iteration count setting. For low iteration
counts PBNG runs with 6 iterations/frame and linear Gauss-Seidel
uses 2 Newton iterations with 3 Gauss-Seidel iteration each. For high

iteration counts PBNG runs with 42 iterations/frame and Newton +
linear Gauss-Seidel runs 6 Newton iterations with 7 Gauss-Seidel
iteration each.
We observe that PBNG has several advantages. It only uses the

diagonal blocks on the Hessian with local solves, resulting in a much
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Fig. 7. Comparisons with Different Computational Budget. A block is
stretched/compressed while being twisted. With a sufficiently large com-
putational budget, Newton’s method is stable, but it becomes unstable
when the computational budget is small. PBD and XPBD-QS do not sig-
nificantly reduce the residual in the given computational time, resulting
in noisy artifacts on the mesh. PBNG maintains relatively small residuals
and generates visually plausible results of the deformable block even if the
budget is limited.

Fig. 8. Different Mesh Resolution. PBNG produces consistent results
when the mesh is spatially refined. The highest resolution mesh in this
comparison has over 2M vertices and only requires 40 iterations to produce
visually plausible results.

lower per iteration cost than linear Gauss-Seidel, as shown in Table 4.
PBNG does not have the overhead of computing the global Hessian
and global residual, which are typically more costly than the entire
simulation budget in real-time applications. PBNG achieves clearly
superior nonlinear system residual reduction, as shown in Figure 10.
Lastly, we observe that linear Gauss-Seidel requires a smaller SOR
𝜔 because it is less stable than PBNG in practice. For this example
𝜔 = 1.3 for linear Gauss-Seidel and 𝜔 = 1.7 for PBNG.

Fig. 9. Different Constitutive Models. PBNG works with various con-
stitutive models. We showcase the corotated, Neo-Hookean, and stable
Neo-Hoookean models through a block twisting and stretching example.
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Fig. 10. Linear Gauss-Seidel vs. PBNG. PBNG achieves superior residual
reduction and visual quality compared to Newton’s method with linear
Gauss-Seidel.

Fig. 11. Hessian Comparison. The top three bars are simulated using
Newton’s method with different linear solvers (QR, BICGSTAB and linear
Gauss-Seidel respectively). The bottom bar is simulated using PBNG. The
top bar uses the exact Hessian and becomes unstable. The bottom bar uses
our Hessian projection and stays stable.

11.1.4 Approximate Hessian Comparison. In this examplewe demon-
strate the efficacy of our Hessian approximation (Equation 32). All
four blocks have 4K particles and 20K elements (see Figure 11). The
top three bars are simulated using Newton’s method with the ex-
act Hessian and different linear solvers. The top bar uses an exact
solve (QR decomposition). The second bar uses an iterative solver
(BICGSTAB since the true Hessian is not positive definite) and the
third bar uses linear Gauss-Seidel. The bottom bar is simulated us-
ing the approximate Hessian in Equation 32. All approaches using
the exact Hessian lead to unstable results, while our approximation
leads to a correct converged result.
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Table 4. Runtime Breakdown: We compare the runtimes of linear Gauss-Seidel and PBNG. Newton Overhead refers to the cost of computing the Newton
residual and explicit Hessian in each iteration (a cost which PBNG does not require).

Iteration Count Newton Overhead Linear GS Runtime/Iter PBNG Runtime/Iter Linear GS SOR PBNG SOR PBNG Runtime/Frame Linear GS Runtime/Frame

6 620ms 35ms 27ms 1.3 1.7 170ms 1345ms
40 620ms 35ms 27ms 1.3 1.7 1080ms 5358ms

11.1.5 Acceleration Comparison. In this example, we compare the
effects of the Chebyshev semi-iterative method and the SORmethod.
In Figure 12, we stretch and twist the same block with 32K particles
and 150K elements. The top bar is simulated with plain PBNG. The
middle bar is simulated with PBNG with Chebyshev semi-iterative
method with 𝛾 = 1.7, 𝜌 = .95. The bottom bar is simulated with
PBNG with SOR and 𝜔 = 1.7. 10 iterations are used for each time
step. With a limited budget, plain PBNG is less converged than
accelerated techniques. Figure 12 shows the convergence rate of the
three methods vs. the number of iterations at the first time step. We
can see that the acceleration techniques boost the convergence rate.

0 10 20 30 40
Iters

101

102

103

104

N
ew

to
n 

R
es

id
ua

l 2
 N

or
m

Chebyshev
SOR
Plain

Fig. 12. Acceleration Techniques. The convergence rate of PBNG may
slow down as the iteration count increases. Chebyshev semi-iterative
method and SOR effectively accelerate the Newton residual reduction.

11.2 Collisions
Here we demonstrate our approach with examples that require
collision resolution. For all examples in this section, we use a time
step of Δ𝑡 = .002𝑠 and detect collision every time step. We illustrate
how weak constraints are dynamically created for collision with a
simple two-block colliding example.

Frame 9 Frame 25

Fig. 13. Two Blocks Colliding. Two blocks collide with each other with
one face clamped. Red particles indicate that dynamic weak constraints
have been built to resolve the collision of corresponding mesh vertices.

11.2.1 Two Blocks Colliding. We demonstrate the generation of
dynamic weak constraints with a simple example. We take two
blocks with one side fixed and drive them toward each other. This
is a dynamic/backward Euler simulation. The blocks have 𝑅0 =

10𝑘𝑔/𝑚3 and Young’s modulus 𝐸 = 1000𝑃𝑎. The weak constraints
have stiffness 𝑘𝑛 = 108 and 𝑘𝜏 = 0. The dynamic weak constraints
are visualized in Figure 13 as red nodes in the mesh.

11.2.2 Dropping Objects. 40 objects with simple shapes are dropped
into a glass box. The objects have a total of 256K particles and
1069K elements. The simulation is runwith dynamic/backward Euler.
Some frames are shown in Figure 14. We show PBNG’s capability
of handling collision-intensive scenarios. The example is run with
Δ𝑡 = 0.002𝑠 , 𝑅0 = 10𝑘𝑔/𝑚3, Young’s modulus 𝐸 = 3000𝑃𝑎 and weak
constraint stiffness 𝑘𝑛 = 108 and 𝑘𝜏 = 0.

11.2.3 Muscles. We quasistatically simulate a large-scale muscula-
ture with collision and connective tissue weak constraints. Themesh
has a total of 284K particles and 1097K elements. The muscles have
𝑅0 = 1000𝑘𝑔/𝑚3, Young’s modulus 𝐸 = 105𝑃𝑎, and the connective
tissue (blue) weak constraint stiffness is isotropic: 𝑘𝑛 = 𝑘𝜏 = 108.
Dynamic collision (red) weak constraint stiffness is anisotropic:
𝑘𝑛 = 108 and 𝑘𝜏 = 0. We show several frames of muscles simu-
lated with PBNG and dynamically generated weak constraints in
Figure 15. PBNG takes 67 seconds to simulate a frame, while New-
ton’s method takes 430s. In Figure 1, we show that PBNG looks
visually the same as Newton, while running 6-7 times faster. We
also show that PBD and XPBD-QS fail to converge. In Figure 1,
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Frame 0 Frame 25

Frame 60 Frame 150

Fig. 14. Objects Dropping. A variety of objects drop under gravity. Our
method is able to robustly handle collisions between deformable objects
through weak constraints.

Frame 387 Frame 650

Frame 387 Frame 650

Fig. 15. PBNG Muscle Simulation. The top row shows simulation results
while the bottom row visualizes the vertex constraint status. Red indicates
a vertex involved in contact, weak constraints are dynamically built to
resolve the collisions. Blue represents the vertex positions of connective
tissue bindings.

we show PBD becomes unstable. In Figure 2, we demonstrate sub-
iteration order-dependent behavior with XPBD-QS. XPBD-QS has
weak constraints processed last, which leads to excessive stretching
of elements. XPBD-QS (Flipped) has weak constraints processed
first, which degrades their enforcement and leaves a gap.

11.2.4 Dropping Armadillos. We showcase the capability of PBNG
with a simulation coupling cloth with solids. In this example 20
armadillos are dropped onto a piece of cloth with four corners held
fixed. Frames are shown at Figure 16. After 3.33𝑠 , one end of the cloth
breaks free and armadillos drop into a glass box. Each armadillo has
17K vertices and 66K particles. The rectangular cloth has 4K particles
and 8K triangles. We set Δ𝑡 = 0.004𝑠, 𝑅0 = 10𝑘𝑔/𝑚3, 𝐸 = 1000𝑃𝑎. For
the rectangular cloth we set 𝑅0 = 10𝑘𝑔/𝑚2, 𝐸cod = 10000𝑃𝑎, 𝑘𝑏 =

Fig. 16. Armadillos Dropping. We demonstrate that PBNG can handle
a large-scale simulation involving many collision-driven deformations and
with clothing and solids coupled together.

.05. We set Poisson ratio 𝜈 = 0.3 for all objects and 𝑘𝑛 = 108 for
weak constraints. The average runtime is 101.2s/frame.

11.3 XPBD with Varying Stiffness
In this example, we demonstrate that XPBD-QS fails to resolve qua-
sistatic problems with varied stiffness. In Figure 17, we show the
initial setup for the simulation. The simulation is quasistatic. Both
block meshes have 𝑅0 = 10𝑘𝑔/𝑚3 and Young’s modulus 𝐸 = 1000𝑃𝑎.
The first block mesh has its top boundary constrained. The second
block is weakly constrained to the first block. The springs have
stiffness 𝑘𝑛 = 𝑘𝜏 = 108. There is gravity in the scene with accelera-
tion −9.8𝑚/𝑠2 in the 𝑦−direction. As we show in Figure 17, PBNG
converges to a plausible state. XPBD-QS and XPBD-QS (Flipped)
fail to converge. Depending on the order of the constraints, it either
leaves a gap between the two blocks or a very stretched top layer of
the bottom block. This example also serves as a simplified version of
the connective bindings on the muscles, which are used in Figure 2.
The residual plot is shown on the right of Figure 17.

11.4 Quasistatic PBD/XPBD and External Forcing
In this example, we show how PBD eliminates the effects of external
forcing as the number of iterations increases. We clamp the left
side of a simple bar mesh. We run a quasistatic simulation with
gravity (acceleration −9.8𝑚/𝑠2 in the𝑦−direction). The bar has 𝑅0 =

10𝑘𝑔/𝑚3 and Young’s modulus 𝐸 = 1000𝑃𝑎. As shown in Figure 18,
PBD converges to a rigid bar configuration. PBNG converges to
a plausible solution. XPBD-QS appears to resolve the issues with
PBD and quasistatics. However, XPBD-QS with 10 iterations per
pseudo-time step appears more converged than XPBD-QS with 1
iteration per pseudo-time step.

11.5 Multiresolution Test: Cloth Stretching
We demonstrate how our multi-layer (MPBNG) approach resolves
excessive stretching with PBNG when the iteration count is low.
A rectangular shape cloth with 8K vertices is suspended from two
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Fig. 17. Two Blocks Hanging. Two identical blocks are bound together
through weak constraints. Green line segments in iteration 0 indicate weak
constraint springs. PBNG is able to reduce the residual by a few orders of
magnitude and converges quickly. XPBD-QSmethods demonstrate iteration-
order-dependent behavior. Residuals oscillate and produce visually incorrect
results.

Fig. 18. Bar under Gravity. A quasistatic simulation of a bar bending under
gravity using different methods. The effect of external forcing vanishes in
the PBD example as the number of iterations increases. More local iterations
of XPBD-QS produces better results. PBNG converges to visually plausible
results within fewer iterations than XPBD-QS.

corners under gravity. The cloth has density 𝑅0 = 10𝑘𝑔/𝑚2, Young’s
modulus 𝐸 = 1000𝑃𝑎, 𝑘𝑏 = 0. We run both PBNG and MPBNG with
a budget of 1.8s/frame of computation each. We take 𝑑𝑡 = 0.005𝑠
and use 30 frames per second. PBNG is run with 44 iterations per
timestep and MPBNG is run with 13 iterations per timestep with
𝑟𝑝𝑎𝑑 = 0.05. As shown in Figure 19, PBNG appears to be much
stretchier than the converged simulation, while MPBNG is less
stretched and almost indistinguishable from the well-converged
ideal solution (despite MPBNG having the same computational run
time as PBNG).

11.6 Multiresolution Test: Clothing on Mannequin
We demonstrate the ability of MPBNG to reduce excessive stretch-
ing with a dress example. The dress has 24K vertices, density 𝑅0 =

10𝑘𝑔/𝑚2, Young’s modulus 𝐸 = 1000𝑃𝑎 and 𝑘𝑏 = 0.01. The simula-
tion is run with Δ𝑡 = .012𝑠 and a fixed budget of 840ms/frame. PBNG
has 84 iterations per frame with this budget and MPBNG has 24 it-
erations. We create a mesh hierachy of four layers, where the layers
have .5K, 1.5K, 6K and 24K particles respectively (see Figure 5). As

Fig. 19. Draping Cloth. A piece of rectangular cloth with two cor-
ners clamped swings under gravity. With a fixed computational time of
1.8s/frame, MPBNG is much more similar to the converged look of the cloth
than PBNG which appears too stretchy.

© 2024 Epic Games, Inc © 2024 Epic Games, Inc

Fig. 20. Draping Dress. With a fixed computational time of 840ms/frame,
MPBNG cloth appears much less stretchy than PBNG alone.

shown in Figure 20, PBNG is stretchier than MPBNG given the same
computational budget. We further demonstrate MPBNG’s capabili-
ties when the mannequin runs (see Figure 1). We take 𝑑𝑡 = 0.003𝑠
and use 20 iterations per time step with 𝑟pad = 2.

11.7 XPBD
We run a simple dynamics example to show that XPBD cannot
reduce the backward Euler system residual in practice, as discussed
in Chen et al. [2023]. We take a simple block with the left side
clamped. It falls under gravity and oscillates. The simulation scene
is shown on the top of Figure 3. The block has 4.1K particles and
17K elements. This simple but representative example demonstrates
superior convergence behavior of PBNG over XPBD.

12 DISCUSSION AND LIMITATIONS
We show that a node-based Gauss-Seidel approach for the nonlin-
ear equations of quasistatic and backward Euler time stepping has
remarkably stable behavior. We show that it is capable of reducing
the nonlinear system residuals in practice, in contrast to PBD/XPBD.
Furthermore, we show that our node-based Gauss-Seidel approach
resolves fundamental issues with PBD/XPBD for quasistatic prob-
lems, particularly for applications that require efficient and reliable
creation of training data. However, our approach is mostly tailored
to isotropic hyperelasticity. In future work, generalizing to the case
of transverse and general anisotropy is of interest.
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