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1 APPENDIX

1.1 Proposition 1
Prop. 1. The shape of △u0u1u2 is independent of the translation

b, and so do 𝐶 . Given any 𝑅, the best b minimizing ∥𝜉 (𝑅)∥∞ is the
vector from the origin o to the center c of 𝐶 , and the minimum
∥𝜉 (𝑅)∥∞ is the radius 𝑟𝑐 of 𝐶 .

Proof. Independence of the translation is deduced since the edge
vector u𝑗u𝑖 = u𝑖 − u𝑗 = (v𝑖 − 𝑅p𝑖 − b) − (v𝑗 − 𝑅p𝑗 − b) = (v𝑖 −
𝑅p𝑖 ) − (v𝑗 − 𝑅p𝑗 ) is independent of the translation b. Hence, the
shape of △u0u1u2 and the minimum covering circle (MCC) 𝐶 of
△u0u1u2 are independent of the translation b (Fig. 1).

Given a rotation 𝑅, we get the rotated template triangle △p′0p
′
1p

′
2,

where p′
𝑖
= 𝑅p𝑖 . △u′0u

′
1u

′
2 is the triangle without the translation b,

i.e., u′
𝑖
= p′

𝑖
− v𝑖 . We denote 𝑉△u′0u′1u′2 = {u′0, u

′
1, u

′
2}. Let q = b + o.

Define 𝑑𝑆 (v) = maxs∈𝑆 ∥v − s∥2 as the distance from a point v to a
point set 𝑆 . Then, we have:

∥𝜉 ∥∞ = max{∥v0 − p′0 − b∥2, ∥v1 − p′1 − b∥2, ∥v2 − p′2 − b∥2}
= max{∥u′0 − b∥2, ∥u′1 − b∥2, ∥u′2 − b∥2}
= max{∥u′0 − q∥2, ∥u′1 − q∥2, ∥u′2 − q∥2}
= 𝑑𝑉△u′0u

′
1u

′
2
(q).

The problem min ∥𝜉 ∥∞ is converted to finding the best point q to
minimize the distance from q to the vertices of △u′0u

′
1u

′
2.

We claim that the best point q for minimizing 𝑑𝑉△u′0u
′
1u

′
2
(q) is the

center c of𝐶 . Otherwise, there must be a point o∗ s.t.𝑑𝑉△u′0u
′
1u

′
2
(o∗) <

𝑑𝑉△u′0u
′
1u

′
2
(c) = 𝑟𝑐 . Then, setting 𝑟∗ = 𝑑𝑉△u′0u

′
1u

′
2
(o∗), the circle𝐶o∗ (𝑟∗)

covers all the vertices of △u′0u
′
1u

′
2 and 𝑟

∗ < 𝑟𝑐 , which contradicts
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Fig. 1. Independent of the translation. (a) △v0v1v2 is a triangle of the
remeshed mesh R and △a0a1a2 indicates the template triangle △p0p1p2
after a rigid transformation 𝑅, b. (b) Move the starting points of the three
vectors (v0−a0, v1−a1, v2−a2) to the origin o. The orange circle is the MCC
of △u0u1u2 and c is its center. Here △u0u1u2 is an obtuse triangle and c is
the midpoint of its longest edge. The transparent figures show another case
with the same rotation but the different translation. The shape of green
triangle △u0u1u2 remains the same, so do the MCC.
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Fig. 2. The obtuse triangle case. (a) △v0v1v2 is a triangle of R and △a0a1a2
indicates the template triangle △p0p1p2 after best rigid transformation 𝑅, b.
a0a2 and v0v2 coincide and their midpoints coincide at a point, denoted as
m. (b) Move the starting points of the three vectors (v0 − a0, v1 − a1, v2 − a2)
to the origin o. The orange circle is the MCC of △u0u1u2 and c is its center.
u0u2 is the longest edge. Based on Prop. 1, the origin o is at the center c of
𝐶 after the best translation b. The transparent figures show another case
with the best translation but another rotation. Corresponding edges e𝑓 and
e𝑡 do not coincide and the radius of its MCC is bigger.

the definition of MCC. As a result, q = c and b = c − o. Since the
MCC of △u0u1u2 is independent of the translation b, min ∥𝜉 ∥∞ =

𝑑𝑉△u0u1u2
(c) = 𝑟𝑐 . □

1.2 Proposition 2
Prop. 2. The longest edge of △u0u1u2 corresponds to an edge of f

(denoted as e𝑓 ) and an edge of t (denoted as e𝑡 ), respectively. Then,
if △u0u1u2 is an obtuse triangle when ∥𝜉 ∥∞ reaches the minimum,
then e𝑓 and e𝑡 coincide and their midpoints coincide.

Proof. Without the loss of generality, assume the longest edge
is u0u2 and the best rotation is 𝑅∗ when ∥𝜉 ∥∞ obtains the minimum.
Considering MCC in the obtuse case, the radius 𝑟𝑐 is the half of
the longest side u0u2 and the center c is at the midpoint of u0u2.
Based on Prop. 1, the origin o is at the center c of 𝐶 after the best
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translation b, indicating that −−−→a0v0 =
−−→cu0 = −−−→cu2 = −−−−→a2v2. Hence,

the midpoints of a0a2 and u0u2 coincide at a point, denoted as m
(Fig. 2).

Next, we prove that e𝑓 and e𝑡 coincide by contradiction. Since
△u0u1u2 and 𝐶 are independent of the translation, the center of
rotation does not influence the shape of △u0u1u2 and 𝐶 . Without
the loss of generality, we now rotate △a0a1a2 aroundm. Suppose
that a0a2 and u0u2 are not coincided after the best rotation 𝑅∗. Since
△u0u1u2 is an obtuse triangle, we have |a1v1 | = |cu1 | < |cu0 | =
|a0v0 | = |a2v2 | = 𝑟 . Thus, we can rotate △a0a1a2 a small angle 𝛿𝜃 to
a new rotated template triangle, denoted as △a′0a

′
1a

′
2, whose |v1a

′
1 |

is still smaller than |v0a′0 | = |v2a′2 | = 𝑟 ′ and 𝑟 ′ < 𝑟 . However, 𝑟 ′ < 𝑟

contradicts the assertion that rotation 𝑅∗ is the best rotation. □

1.3 𝑓 (𝜃 )
Based on Prop. 1, the shape of △u0u1u2 and 𝐶 are also independent
of the center of rotation. In the acute triangle case, we place a0
at the origin o, then the center of rotation 𝑅 is a0. We draw the
auxiliary lines, as shown in Fig. 3, where quadrilaterals a0a1v1u1
and a0a2v2u2 are parallelograms. Then, △v0u1u2 is the same as
△u0u1u2. Thus, we only need to find the radius of the circumcircle
of △v0u1u2:

min
𝑅

𝑟𝑐 = min
𝑅

∥u1 − v0∥2 · ∥u2 − u1∥2 · ∥v0 − u2∥2
4Area(△v0u1u2)

,

where
𝑅 =

[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

]
.

The expression for 𝑟𝑐 can be derived as:
𝑓 (𝜃 ) = 𝑟𝑐 =

∥u1 − v0 ∥2 · ∥u2 − u1 ∥2 · ∥v0 − u2 ∥2
4Area(△v0u1u2 )

=

√
(𝛼1 + 𝛼2 cos𝜃 + 𝛼3 sin𝜃 ) (𝛼4 + 𝛼5 cos𝜃 + 𝛼6 sin𝜃 ) (𝛼7 + 𝛼8 cos𝜃 + 𝛼9 sin𝜃 )

(𝛼10 + 𝛼11 cos𝜃 + 𝛼12 sin𝜃 )2

=

√√√√√√√√ (𝛼1 + 𝛼2 1−𝑡2
𝑡2+1

+ 𝛼3 2𝑡
𝑡2+1

) (𝛼4 + 𝛼5 1−𝑡2
𝑡2+1

+ 𝛼6 2𝑡
𝑡2+1

) (𝛼7 + 𝛼8 1−𝑡2
𝑡2+1

+ 𝛼9 2𝑡
𝑡2+1

(𝛼10 + 𝛼11 1−𝑡2
𝑡2+1

+ 𝛼12 2𝑡
𝑡2+1

)2

= 𝑔 (𝑡 ),

where 𝑡 = tan(𝜃/2) and 𝛼1, ..., 𝛼12 are the constants related to
triangles f = △v0v1v2 and t = △p0p1p2,
𝛼1 = 𝑥2v0 − 2𝑥v0𝑥v1 + 𝑥2v1 + 𝑥2p0 − 2𝑥p0𝑥p1 + 𝑥2p1 + 𝑦2v0 − 2𝑦v0 𝑦v1 + 𝑦2v1 + 𝑦2p0 − 2𝑦p0 𝑦p1 + 𝑦2p1 ,

𝛼2 = 2 (𝑥v1 (𝑥p0 − 𝑥p1 ) + 𝑥v0 (−𝑥p0 + 𝑥p1 ) − (𝑦v0 − 𝑦v1 ) (𝑦p0 − 𝑦p1 ) ),

𝛼3 = 2 (𝑥p1 (𝑦v0 − 𝑦v1 ) + 𝑥p0 (−𝑦v0 + 𝑦v1 ) + (𝑥v0 − 𝑥v1 ) (𝑦p0 − 𝑦p1 ) ),

𝛼4 = 𝑥2v0 − 2𝑥v0𝑥v2 + 𝑥2v2 + 𝑥2p0 − 2𝑥p0𝑥p2 + 𝑥2p2 + 𝑦2v0 − 2𝑦v0 𝑦v2 + 𝑦2v2 + 𝑦2p0 − 2𝑦p0 𝑦p2 + 𝑦2p2 ,

𝛼5 = 2 (𝑥v2 (𝑥p0 − 𝑥p2 ) + 𝑥v0 (−𝑥p0 + 𝑥p2 ) − (𝑦v0 − 𝑦v2 ) (𝑦p0 − 𝑦p2 ) ),

𝛼6 = 2 (𝑥p2 (𝑦v0 − 𝑦v2 ) + 𝑥p0 (−𝑦v0 + 𝑦v2 ) + (𝑥v0 − 𝑥v2 ) (𝑦p0 − 𝑦p2 ) ),

𝛼7 = 𝑥2v1 − 2𝑥v1𝑥v2 + 𝑥2v2 + 𝑥2p1 − 2𝑥p1𝑥p2 + 𝑥2p2 + 𝑦2v1 − 2𝑦v1 𝑦v2 + 𝑦2v2 + 𝑦2p1 − 2𝑦p1 𝑦p2 + 𝑦2p2 ,

𝛼8 = 2 (𝑥v2 (𝑥p1 − 𝑥p2 ) + 𝑥v1 (−𝑥p1 + 𝑥p2 ) − (𝑦v1 − 𝑦v2 ) (𝑦p1 − 𝑦p2 ) ),

𝛼9 = 2 (𝑥p2 (𝑦v1 − 𝑦v2 ) + 𝑥p1 (−𝑦v1 + 𝑦v2 ) + (𝑥v1 − 𝑥v2 ) (𝑦p1 − 𝑦p2 ) ),

𝛼10 = 2 (𝑥v1 𝑦v0 − 𝑥v2 𝑦v0 − 𝑥v0 𝑦v1 + 𝑥v2 𝑦v1 + 𝑥v0 𝑦v2 − 𝑥v1 𝑦v2 + 𝑥p1 𝑦p0 − 𝑥p2 𝑦p0 − 𝑥p0 𝑦p1
+ 𝑥p2 𝑦p1 + 𝑥p0 𝑦p2 − 𝑥p1 𝑦p2 ),

𝛼11 = 2 (𝑥p2 𝑦v0 + 𝑥p0 𝑦v1 − 𝑥p2 𝑦v1 − 𝑥p0 𝑦v2 − 𝑥p1 𝑦v0 + 𝑥p1 𝑦v2 − 𝑥v1 𝑦p0 + 𝑥v2 𝑦p0 + 𝑥v0 𝑦p1
− 𝑥v2 𝑦p1 − 𝑥v0 𝑦p2 + 𝑥v1 𝑦p2 ),

𝛼12 = 2 (−𝑥v1𝑥p0 + 𝑥v2𝑥p0 + 𝑥v0𝑥p1 − 𝑥v2𝑥p1 − 𝑥v0𝑥p2 + 𝑥v1𝑥p2 − 𝑦v1 𝑦p0 + 𝑦v2 𝑦p0 + 𝑦v0 𝑦p1
− 𝑦v2 𝑦p1 − 𝑦v0 𝑦p2 + 𝑦v1 𝑦p2 ) .

Since 𝑔(𝑡) = 𝑓 (𝜃 ) ≥ 0, argmin𝑡 𝑔(𝑡) = argmin𝑡 𝐺 (𝑡) = 𝑔2 (𝑡).
To solve min𝑡 𝐺 (𝑡), we differentiate 𝐺 (𝑡) and take the numerator
of 𝐺 ′(𝑡) as 𝑃 (𝑡). Since 𝑃 (𝑡) is a tenth degree polynomial, we use

(a) (b)
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a2

u1
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c

𝑓 (𝜃 )

𝜃

𝑟𝑐

Fig. 3. The acute triangle case. (a) △v0v1v2 is a triangle of R and △a0a1a2
indicates the template triangle △p0p1p2 after a rigid transformation 𝑅, b.
Quadrilaterals a0a1v1u1 and a0a2v2u2 are parallelograms. c is the center of
the circumcircle of △a0u1u2, which is the same as the MCC of △u0u1u2 for
the acute triangle. (b) The image of the function 𝑓 (𝜃 ) = 𝑟𝑐 .

v𝑖

c𝑖

q1
q2 x2

𝐵𝑋
𝐵𝑌

𝑍
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Fig. 4. Blue points in the figure are the templates’ vertices corresponding to
v𝑖 , i.e., points in 𝑆 (v𝑖 ) . The orange circle represents the minimum bounding
sphere of 𝑆 (v𝑖 ) , denoted as 𝐵𝑆 (v𝑖 ) . c𝑖 is the center of 𝐵𝑆 (v𝑖 ) . P is the plane
perpendicular to the line v𝑖c𝑖 through the point c𝑖 divideing the minimum
bounding sphere 𝐵𝑆 (v𝑖 ) into two parts 𝐵𝑋 and 𝐵𝑌 . The bisecting plane of
the edge q1q2 divide the space into two parts, and we denote 𝑍 as the part
containing q1. When moving v𝑖 from its start point to c𝑖 , max𝑠∈𝑆 (v𝑖 ) ∥𝑠 −
(v𝑖 ) ∥ decreases monotonically and so does the maxf∈Ω𝑖

𝑑assembly (f) .

Jenkins-Traub algorithm [Jenkins and Traub 1970] to find its all ten
roots. We first compare the function values at the ten roots to find
the minimum and then compute the corresponding 𝜃 as the result.

1.4 Proposition 3
Prop. 3. For each vertex v𝑖 , the maximum assembly error on its

one-ring triangles (denoted as Ω𝑖 ) of v𝑖 is:

𝑑 (𝛼𝑖 ) = max
f ∈Ω𝑖

𝑑assembly (f) = max
f ∈Ω𝑖

min
t∈T

𝑗∈{1,··· ,6}

𝑑max (f, t𝜙 𝑗 ) (1)

where 0 ≤ 𝛼𝑖 ≤ 1 is the step size. Then, 𝑑 (𝛼𝑖 ) monotonically
decreases with respect to 𝛼𝑖 .

Proof. Let P be the plane perpendicular to the line v𝑖c𝑖 through
the point c𝑖 (Fig. 4). 𝑆 (v𝑖 ) consists of the templates’ vertices cor-
responding to v𝑖 . P divides the minimum bounding sphere 𝐵𝑆 (v𝑖 )
into two parts 𝐵𝑋 and 𝐵𝑌 . Let 𝐵𝑋 be the part far away from v𝑖 and
𝐵′
𝑋

= 𝐵𝑋 ∪ P. Then, the point set 𝑋 = 𝑆 (v𝑖 ) ∩ 𝐵′
𝑋
are not empty;

otherwise, there is a bounding sphere having a smaller radius than
𝐵𝑆 (v𝑖 ) , which contradicts the assertion that 𝐵𝑆 (v𝑖 ) is the minimum
bounding sphere. Let v′

𝑖
= v𝑖 + 𝛼𝑖d, we define:

𝛿 (𝛼𝑖 ) = 𝑑𝑆 (v𝑖 ) (v
′
𝑖 ) = max

𝑠∈𝑆 (v𝑖 )
∥𝑠 − (v𝑖 + 𝛼𝑖d)∥, (2)
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where 𝑑𝑆 (v) = maxs∈𝑆 ∥v − s∥2 is defined as the distance from a
point v to a point set 𝑆 .
𝛿 (𝛼𝑖 ) is monotonically decreasing, and we prove it by contra-

diction. According to the fact that 𝛿 (𝛼𝑖 ) = 𝑑𝑆 (v′𝑖 ) = 𝑑𝑋 (v′
𝑖
) ≥

𝑑𝑌 (v′𝑖 ), we only need to focus on the set 𝑋 and 𝑑𝑋 (v′
𝑖
). Suppose

that 𝛿 (𝛼𝑖 ), 𝛼𝑖 ∈ [0, 1] does not monotonically decrease, then there
are two different values 𝛼1

𝑖
< 𝛼2

𝑖
, s.t. 𝛿 (𝛼1

𝑖
) < 𝛿 (𝛼2

𝑖
). Namely,

∃ q1, q2 ∈ v𝑖c𝑖 , q1 = v𝑖 + 𝛼1
𝑖
d, q2 = v𝑖 + 𝛼2

𝑖
d and 𝛼1

𝑖
< 𝛼2

𝑖
, s.t.

𝑑𝑋 (q1) < 𝑑𝑋 (q2). Let x2 ∈ 𝑋 be the point where𝑑𝑋 (q2) is obtained,
i.e., 𝑑𝑋 (q2) = ∥q2 − x2∥. Then, ∥q1 − x2∥ ≤ 𝑑𝑋 (q1) < 𝑑𝑋 (q2) =

∥q2 − x2∥. The bisecting plane of the edge q1q2 divide the space
into two parts, and we denote 𝑍 as the part containing q1. We have
𝑍 ∩ 𝑋 = ∅, and since x2 ∈ 𝑋 , x2 ∉ 𝑍 . Thus, ∥q1 − x2∥ ≥ ∥q2 − x2∥,
and the contradiction arises.
Then, ∀𝛼𝑖 ∈ [0, 1], we have:
𝑑 (𝛼𝑖 ) = max

f ∈Ω𝑖

𝑑assembly (f) = max
f ∈Ω𝑖

min
t∈T

𝑗∈{1,··· ,6}

𝑑max (f, t𝜙 𝑗 ) ≥ 𝛿 (𝛼𝑖 ). (3)

𝑑 (𝛼𝑖 ) = maxf ∈Ω𝑖
𝑑assembly (f) must be obtained at one vertex on

certain triangle f ∈ Ω𝑖 , denoted as v∗. If v∗ = v′
𝑖
, then 𝑑 (𝛼𝑖 ) =

𝛿 (𝛼𝑖 ); otherwise, 𝑑 (𝛼𝑖 ) is obtained at another point, indicating that
𝑑 (𝛼𝑖 ) does not change as 𝛼𝑖 updates. More specifically, if ∃𝛼 ′

𝑖
, s.t.

𝑑 (𝛼 ′
𝑖
) > 𝛿 (𝛼 ′

𝑖
), then 𝑑 (𝛼𝑖 ) is constant ∀𝛼𝑖 ∈ (𝛼 ′

𝑖
, 1); otherwise

𝑑 (𝛼𝑖 ) = 𝛿 (𝛼𝑖 ). Hence, since 𝛿 (𝛼𝑖 ) is monotonically decreasing,𝑑 (𝛼𝑖 )
is also monotonically decreasing.

□

1.5 Proposition 4
Prop. 4. Given two triangles 𝐴 = △a𝑜a1a2 and 𝐵 = △b0b1b2, let

𝑑𝐻 (𝐴, 𝐵) be the two-sided Hausdorff distance between two triangles
and 𝜉 = (∥b0 − a0∥2, ∥b1 − a1∥2, ∥b2 − a2∥2). Then,

𝑑𝐻 (𝐴, 𝐵) ≤ ∥𝜉 ∥∞ ≤ ∥𝜉 ∥2 .

Proof. Since∀𝑖 ∈ {0, 1, 2}, 𝑑𝐻 (𝐴, 𝐵) ≤ ∥b𝑖−a𝑖 ∥2 ≤ ∥𝜉 ∥2, 𝑑𝐻 (𝐴, 𝐵) ≤
∥𝜉 ∥∞ ≤ ∥𝜉 ∥2. □
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